论文标题
HUDF中的ALMA光谱调查:线亮度函数上的多波段约束和分子气体的宇宙密度
The ALMA Spectroscopic Survey in the HUDF: Multi-band constraints on line luminosity functions and the cosmic density of molecular gas
论文作者
论文摘要
我们使用Hubble Ultra Deep Field(ASPECS)中的ALMA光谱调查提出了CO和原子细胞线光度函数分析。 ASPEC由两个覆盖整个ALMA 3mm和1.2mm带的空间重叠的马赛克组成。我们将1.2mm数据立方体候选线搜索的结果与先前从3mm Cube获得的结果结合在一起。我们的分析表明,$ \ sim $ 80%在3mm处观察到的线路通量来自CO(2-1)或CO(3-2)发射器$ z $ = 1-3(``宇宙中午'')。在1.2mm处,超过一半的线路磁通量来自InterMediate-J Co转换($ J _ {\ rm UP} $ = 3-6); $ \ sim12 $%来自中性碳管线;来自单元离子碳的$ <1 $%,[CII]。这意味着未来的[CII]强度映射调查在电离时期将需要考虑一个非常重要的CO前景。在1.2mm处探测的CO光度函数显示,在给定线路发光度(以$ L'U的单位为单位)下的数字密度下降,增加了$ J _ {\ rm UP} $和RedShift。在固定的红移下,CO光度函数在不同的CO转换之间的比较揭示了高达$ z \ sim 4 $的星系中的亚热条件。另外,在不同红移下相同过渡的CO光度函数的比较表明,进化不是由激发驱动的。星系中分子气的宇宙密度,$ρ_ {\ rm H2} $,显示了红移的演变,从高红移到$ z \ sim1.5 $,然后是因子$ \ sim 6 $下降到今天。这与宇宙恒星形成速率密度的演变定性一致,这表明分子气体耗竭时间与红移之后,在恒星形成的星系群体上平均之后,红移近似恒定。
We present a CO and atomic fine-structure line luminosity function analysis using the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field (ASPECS). ASPECS consists of two spatially-overlapping mosaics that cover the entire ALMA 3mm and 1.2mm bands. We combine the results of a line candidate search of the 1.2mm data cube with those previously obtained from the 3mm cube. Our analysis shows that $\sim$80% of the line flux observed at 3mm arises from CO(2-1) or CO(3-2) emitters at $z$=1-3 (`cosmic noon'). At 1.2mm, more than half of the line flux arises from intermediate-J CO transitions ($J_{\rm up}$=3-6); $\sim12$% from neutral carbon lines; and $< 1$% from singly-ionized carbon, [CII]. This implies that future [CII] intensity mapping surveys in the epoch of reionization will need to account for a highly significant CO foreground. The CO luminosity functions probed at 1.2mm show a decrease in the number density at a given line luminosity (in units of $L'$) at increasing $J_{\rm up}$ and redshift. Comparisons between the CO luminosity functions for different CO transitions at a fixed redshift reveal sub-thermal conditions on average in galaxies up to $z\sim 4$. In addition, the comparison of the CO luminosity functions for the same transition at different redshifts reveals that the evolution is not driven by excitation. The cosmic density of molecular gas in galaxies, $ρ_{\rm H2}$, shows a redshift evolution with an increase from high redshift up to $z\sim1.5$ followed by a factor $\sim 6$ drop down to the present day. This is in qualitative agreement with the evolution of the cosmic star-formation rate density, suggesting that the molecular gas depletion time is approximately constant with redshift, after averaging over the star-forming galaxy population.