论文标题

关于机器学习增强的雷诺平均和大型涡流模拟模型的观点

Perspectives on Machine Learning-augmented Reynolds-averaged and Large Eddy Simulation Models of Turbulence

论文作者

Duraisamy, Karthik

论文摘要

这项工作对使用机器学习(ML)的最新发展介绍了审查和观点,以增强雷诺平均的Navier-Stokes(RANS)和大型涡流模拟(LES)模型。在RANS和LES建模的背景下,讨论了应用监督学习来代表未挂起的术语,模型差异和子滤波器量表的不同方法。特别强调训练程序对ML增强与潜在物理模型的一致性的影响。详细详细介绍了促进模型一致训练的技术,并避免了直接数值模拟数据的完整领域的要求。随后,讨论了有关特征空间选择的物理信息和数学考虑因素,并在ML模型上施加约束。为了开发可概括的ML仪式和LES模型,讨论了出色的挑战,并提供了观点。尽管在孤立的场景中已经证明了ML启动的湍流建模的承诺,但本文的总体共识是,真正可概括的模型需要模型持续的培训,并仔细地表征了基本的假设和对物理上和数学知情的先知和约束,以说明数据相关的不可避免地是对数据相关的预测。因此,应将机器学习视为湍流建模者工具包中的一种工具。这项建模努力需要多学科的进步,因此本文的目标受众是流体力学界以及计算科学和机器学习社区。

This work presents a review and perspectives on recent developments in the use of machine learning (ML) to augment Reynolds-averaged Navier--Stokes (RANS) and Large Eddy Simulation (LES) models of turbulent flows. Different approaches of applying supervised learning to represent unclosed terms, model discrepancies and sub-filter scales are discussed in the context of RANS and LES modeling. Particular emphasis is placed on the impact of the training procedure on the consistency of ML augmentations with the underlying physical model. Techniques to promote model-consistent training, and to avoid the requirement of full fields of direct numerical simulation data are detailed. This is followed by a discussion of physics-informed and mathematical considerations on the choice of the feature space, and imposition of constraints on the ML model. With a view towards developing generalizable ML-augmented RANS and LES models, outstanding challenges are discussed, and perspectives are provided. While the promise of ML-augmented turbulence modeling is clear, and successes have been demonstrated in isolated scenarios, a general consensus of this paper is that truly generalizable models require model-consistent training with careful characterization of underlying assumptions and imposition of physically and mathematically informed priors and constraints to account for the inevitable shortage of data relevant to predictions of interest. Thus, machine learning should be viewed as one tool in the turbulence modeler's toolkit. This modeling endeavor requires multi-disciplinary advances, and thus the target audience for this paper is the fluid mechanics community, as well as the computational science and machine learning communities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源