论文标题
Graphcrop:用于图形分类的子图裁剪
GraphCrop: Subgraph Cropping for Graph Classification
论文作者
论文摘要
我们提出了一种新方法,以使图神经网络(GNN)适度,以更好地概括图分类。观察到子结构的省略并不一定会更改整个图的类标签,我们开发了\ textbf {graphcrop}(子图裁切)数据增强方法,以模拟该子结构遗漏的现实世界噪声。原则上,GraphCrop利用以节点为中心的策略来从原始图中裁剪一个连续的子图,同时保持其连接性。通过保留图形分类的有效结构上下文,我们鼓励GNN在全球意义上理解图形结构的内容,而不是依靠一些关键的节点或边缘,这些节点或边缘可能并不总是存在。 GraphCrop是免费学习的参数学习,易于实现在现有的基于GNN的图形分类器中。在定性上,GraphCrop通过生成新颖且信息丰富的增强图来扩展现有的训练集,该图在大多数情况下保留了原始图形标签。数量上,Graphcrop在多个标准数据集上产生显着且一致的增长,因此增强了流行的GNN以优于基线方法。
We present a new method to regularize graph neural networks (GNNs) for better generalization in graph classification. Observing that the omission of sub-structures does not necessarily change the class label of the whole graph, we develop the \textbf{GraphCrop} (Subgraph Cropping) data augmentation method to simulate the real-world noise of sub-structure omission. In principle, GraphCrop utilizes a node-centric strategy to crop a contiguous subgraph from the original graph while maintaining its connectivity. By preserving the valid structure contexts for graph classification, we encourage GNNs to understand the content of graph structures in a global sense, rather than rely on a few key nodes or edges, which may not always be present. GraphCrop is parameter learning free and easy to implement within existing GNN-based graph classifiers. Qualitatively, GraphCrop expands the existing training set by generating novel and informative augmented graphs, which retain the original graph labels in most cases. Quantitatively, GraphCrop yields significant and consistent gains on multiple standard datasets, and thus enhances the popular GNNs to outperform the baseline methods.