论文标题

散射理论中的转移矩阵:基本属性和最新发展的调查

Transfer matrix in scattering theory: A survey of basic properties and recent developments

论文作者

Mostafazadeh, Ali

论文摘要

我们在一个维度中对时间无关的散射理论进行了教学介绍,重点是转移矩阵的基本属性和最新应用。特别是,我们开始调查一些潜在散射的基本概念,例如转移矩阵及其分析性,多重功能和局部周期性的潜力,JOST溶液,光谱奇异性以及其时间转换以及无方向反射性和无形性和隐形性。然后,我们提供了Lippmann-Schwinger方程式和Born系列的简单推导,并讨论了天生的近似。接下来,我们概述了一个最近在一个维度上独立于时间独立散射理论的动态表述。该公式将传递矩阵和散射问题的解有关给定潜力的散射问题解决方案,以解决有效的非单生二级量子系统的时间依赖性schrödinger方程。我们提供对该配方及其最重要应用的独立处理。具体而言,我们使用它来设计出出生系列的强大替代方案和出生的近似值,得出了反射和传输幅度的动力方程,讨论了它们在构造确切的可调单向上隐形潜能时的应用,并使用它们为单模反向散射问题提供精确的解决方案。后者在设计具有多种功能的光学设备方面具有重要的应用,相当于为有限范围的复合势提供明确的构造,其反射和传输幅度在任何给定的vavenumber上都采用任意规定的值。

We give a pedagogical introduction to time-independent scattering theory in one dimension focusing on the basic properties and recent applications of transfer matrices. In particular, we begin surveying some basic notions of potential scattering such as transfer matrix and its analyticity, multi-delta-function and locally periodic potentials, Jost solutions, spectral singularities and their time-reversal, and unidirectional reflectionlessness and invisibility. We then offer a simple derivation of the Lippmann-Schwinger equation and Born series, and discuss the Born approximation. Next, we outline a recently developed dynamical formulation of time-independent scattering theory in one dimension. This formulation relates the transfer matrix and therefore the solution of the scattering problem for a given potential to the solution of the time-dependent Schrödinger equation for an effective non-unitary two-level quantum system. We provide a self-contained treatment of this formulation and some of its most important applications. Specifically, we use it to devise a powerful alternative to the Born series and Born approximation, derive dynamical equations for the reflection and transmission amplitudes, discuss their application in constructing exact tunable unidirectionally invisible potentials, and use them to provide an exact solution for single-mode inverse scattering problems. The latter, which has important applications in designing optical devices with a variety of functionalities, amounts to providing an explicit construction for a finite-range complex potential whose reflection and transmission amplitudes take arbitrary prescribed values at any given wavenumber.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源