论文标题
在收获热波动能的分子自旋发动机中的量子优势
Quantum advantage in a molecular spintronic engine that harvests thermal fluctuation energy
论文作者
论文摘要
最新的理论和实验展示了如何利用量子力学的效率超过经典Carnot极限的效率。到目前为止,这需要由繁琐的外部电磁源驱动的原子发动机。在这里,使用分子自旋形成术,我们提出了一种既具有电子且自主的实施方式。我们的Spintronic量子发动机通过具有邻苯二甲胺(PC)分子的顺磁性CO形成的旋转Qubit链形成的旋转Qubit链来部署几个已知的量子资产。密度功能计算表明,跨界面的转运波动可以稳定托有旋转翻转过程的CO选磁中心上的自旋相干性。在垂直分子纳米台词中,我们测量了持久的直流电生成,室温以上的输出功率,两个发动机过程的两个量子热力学特征以及在FE/C60界面上电流的89%自旋极化。至关重要的是,这种电子自旋的选择通过恶魔反馈和控制,电荷电流以与内置电势屏障的流动。对自旋量子发动机的进一步研究,对Spintronic技术中量子信息过程的了解以及对基于自旋的信息技术链进行重新处理的进一步研究,可以帮助加速过渡到清洁能源。
Recent theory and experiments have showcased how to harness quantum mechanics to assemble heat/information engines with efficiencies that surpass the classical Carnot limit. So far, this has required atomic engines that are driven by cumbersome external electromagnetic sources. Here, using molecular spintronics, we propose an implementation that is both electronic and autonomous. Our spintronic quantum engine heuristically deploys several known quantum assets by having a chain of spin qubits formed by the paramagnetic Co centers of phthalocyanine (Pc) molecules electronically interact with electron-spin selecting Fe/C60 interfaces. Density functional calculations reveal that transport fluctuations across the interface can stabilize spin coherence on the Co paramagnetic centers, which host spin flip processes. Across vertical molecular nanodevices, we measure enduring dc current generation, output power above room temperature, two quantum thermodynamical signatures of the engine's processes, and a record 89% spin polarization of current across the Fe/C60 interface. It is crucially this electron spin selection that forces, through demonic feedback and control, charge current to flow against the built-in potential barrier. Further research into spintronic quantum engines, insight into the quantum information processes within spintronic technologies, and retooling the spintronic-based information technology chain, could help accelerate the transition to clean energy.