论文标题
有条件的顺序调制,以进行有效的全局图像修饰
Conditional Sequential Modulation for Efficient Global Image Retouching
论文作者
论文摘要
照片修饰的目的是增强摄影缺陷(例如过度/暴露量),对比度不佳,不抗光的饱和度等摄影缺陷的审美视觉质量。实际上,可以通过一系列图像处理操作来完成照片修饰。在本文中,我们研究了一些常用的修饰操作,并在数学上发现这些独立于像素的操作可以通过多层感知器(MLP)近似或配制。基于此分析,我们提出了一个极其轻巧的框架 - 条件顺序修饰网络(CSRNET) - 以进行有效的全局图像修饰。 CSRNET由基本网络和条件网络组成。基本网络的作用像MLP,该MLP独立处理每个像素,条件网络提取输入图像的全局特征以生成条件向量。为了实现修饰操作,我们使用全局特征调制(GFM)调节中间特征,其中参数通过条件向量转换。 CSRNET受益于$ 1 \ times1 $卷积的利用,仅包含少于37K的可训练参数,这比现有基于学习的方法小的数量级。广泛的实验表明,我们的方法在定量和质量上实现了基准MIT-Adobe Fivek数据集上的最新性能。代码可在https://github.com/hejingwenhejingwen/csrnet上找到。
Photo retouching aims at enhancing the aesthetic visual quality of images that suffer from photographic defects such as over/under exposure, poor contrast, inharmonious saturation. Practically, photo retouching can be accomplished by a series of image processing operations. In this paper, we investigate some commonly-used retouching operations and mathematically find that these pixel-independent operations can be approximated or formulated by multi-layer perceptrons (MLPs). Based on this analysis, we propose an extremely light-weight framework - Conditional Sequential Retouching Network (CSRNet) - for efficient global image retouching. CSRNet consists of a base network and a condition network. The base network acts like an MLP that processes each pixel independently and the condition network extracts the global features of the input image to generate a condition vector. To realize retouching operations, we modulate the intermediate features using Global Feature Modulation (GFM), of which the parameters are transformed by condition vector. Benefiting from the utilization of $1\times1$ convolution, CSRNet only contains less than 37k trainable parameters, which is orders of magnitude smaller than existing learning-based methods. Extensive experiments show that our method achieves state-of-the-art performance on the benchmark MIT-Adobe FiveK dataset quantitively and qualitatively. Code is available at https://github.com/hejingwenhejingwen/CSRNet.