论文标题

分析制造业企业中的功耗数据的目标和措施

Goals and Measures for Analyzing Power Consumption Data in Manufacturing Enterprises

论文作者

Henning, Sören, Hasselbring, Wilhelm, Burmester, Heinz, Möbius, Armin, Wojcieszak, Maik

论文摘要

制造业中的物联网采用允许企业实时和机器水平监视其电力消耗。在本文中,我们跟进了这种新兴的数据获取机会,并表明分析制造业企业中的功耗可以实现各种目的。除了出于经济和生态原因降低总体功耗的普遍目标外,例如可以使用这些数据来改善生产过程。 根据文献综述和专家访谈,我们讨论了分析功耗数据如何为目标报告,优化,故障检测和预测性维护服务。为了解决这些目标,我们建议在软件中实施实时数据处理,多级监控,时间聚合,相关性,异常检测,预测,可视化和警报。 我们将发现转移到两个制造业企业,并展示了这些企业中提出的目标是如何反映的。在功耗分析平台的试点实施中,我们展示了如何使用基于微服务的体系结构,流处理技术和雾计算范式来实施我们的措施。我们将实施方式作为开源以及公共演示,允许复制和扩展我们的研究。

The Internet of Things adoption in the manufacturing industry allows enterprises to monitor their electrical power consumption in real time and at machine level. In this paper, we follow up on such emerging opportunities for data acquisition and show that analyzing power consumption in manufacturing enterprises can serve a variety of purposes. Apart from the prevalent goal of reducing overall power consumption for economical and ecological reasons, such data can, for example, be used to improve production processes. Based on a literature review and expert interviews, we discuss how analyzing power consumption data can serve the goals reporting, optimization, fault detection, and predictive maintenance. To tackle these goals, we propose to implement the measures real-time data processing, multi-level monitoring, temporal aggregation, correlation, anomaly detection, forecasting, visualization, and alerting in software. We transfer our findings to two manufacturing enterprises and show how the presented goals reflect in these enterprises. In a pilot implementation of a power consumption analytics platform, we show how our proposed measures can be implemented with a microservice-based architecture, stream processing techniques, and the fog computing paradigm. We provide the implementations as open source as well as a public demo allowing to reproduce and extend our research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源