论文标题
Shor-Movassagh链会导致不寻常的整合模型
Shor-Movassagh chain leads to unusual integrable model
论文作者
论文摘要
可以通过Motzkin路径分析描述Shor-Movassagh链的基态。没有对激发态的分析描述,该模型无法解决。我们证明了该模型在本文中没有相互作用[Free Shor-Movassagh]的整合性。显式构建了免费的Shor-Movassagh开放链的LAX对。我们进一步获得与模型在开放间隔内的集成性兼容的边界$ k $ matrices。我们的构造为模型的量子集成性提供了直接的演示,该模型的量子整合性是由杨 - 巴克斯特代数描述的。由于缺乏交叉单位性,因此无法通过反射方程(边界扬 - 巴克斯特方程)构建可集成的开链。
The ground state of Shor-Movassagh chain can be analytically described by the Motzkin paths. There is no analytical description of the excited states, the model is not solvable. We prove the integrability of the model without interacting part in this paper [free Shor-Movassagh]. The Lax pair for the free Shor-Movassagh open chain is explicitly constructed. We further obtain the boundary $K$-matrices compatible with the integrability of the model on the open interval. Our construction provides a direct demonstration for the quantum integrability of the model, described by Yang-Baxter algebra. Due to the lack of crossing unitarity, the integrable open chain can not be constructed by the reflection equation (boundary Yang-Baxter equation).