论文标题

弹性和失败在流网络中的拓扑理论

Topological theory of resilience and failure spreading in flow networks

论文作者

Kaiser, Franz, Witthaut, Dirk

论文摘要

供应网络中的链接故障可能会带来灾难性的后果,这可能会导致网络彻底崩溃。因此,人们广泛追捕防止失败扩散的策略。在这里,我们利用线性流网络中链路故障的跨树公式来分析防止失败扩散的拓扑结构。特别是,我们利用基于\ textIt {矩阵树定理}的电阻网络获得的结果来分析电源网格中的链路故障后的故障扩散。使用链接故障的生成树公式,我们根据网络拓扑分析了三种策略,以减少单个链接失败的影响。与基于降低网络连通性的传统遏制策略相比,我们所有的策略并没有降低电网运输流量或实际上改善它的能力。我们的结果还解释了为什么某些连接功能完全抑制了最近出版物中报道的任何失败扩散。

Link failures in supply networks can have catastrophic consequences that can lead to a complete collapse of the network. Strategies to prevent failure spreading are thus heavily sought after. Here, we make use of a spanning tree formulation of link failures in linear flow networks to analyse topological structures that prevent failures spreading. In particular, we exploit a result obtained for resistor networks based on the \textit{Matrix tree theorem} to analyse failure spreading after link failures in power grids. Using a spanning tree formulation of link failures, we analyse three strategies based on the network topology that allow to reduce the impact of single link failures. All our strategies do not reduce the grid's ability to transport flow or do in fact improve it - in contrast to traditional containment strategies based on lowering network connectivity. Our results also explain why certain connectivity features completely suppress any failure spreading as reported in recent publications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源