论文标题

语义工作流程和机器学习评估城市树木的碳存储

Semantic Workflows and Machine Learning for the Assessment of Carbon Storage by Urban Trees

论文作者

Carrillo, Juan, Garijo, Daniel, Crowley, Mark, Carrillo, Rober, Gil, Yolanda, Borda, Katherine

论文摘要

气候科学对于理解全球温度变化的原因和后果至关重要,并且对决定性的决策至关重要。但是,气候科学研究通常需要解决来自多个领域的数据,软件和实验方法之间的复杂互操作问题。科学工作流系统提供了无与伦比的优势来解决这些问题,包括实验的可重复性,出处捕获,软件可重复使用性和知识共享。在本文中,我们介绍了一个新颖的工作流程,其中包含一系列连接的组件,以执行空间数据准备,用机器学习算法对卫星图像进行分类以及对城市树木存储的碳的评估。据我们所知,这是第一个估计非洲地区碳存储的研究,遵循政府间气候变化小组(IPCC)的指南。

Climate science is critical for understanding both the causes and consequences of changes in global temperatures and has become imperative for decisive policy-making. However, climate science studies commonly require addressing complex interoperability issues between data, software, and experimental approaches from multiple fields. Scientific workflow systems provide unparalleled advantages to address these issues, including reproducibility of experiments, provenance capture, software reusability and knowledge sharing. In this paper, we introduce a novel workflow with a series of connected components to perform spatial data preparation, classification of satellite imagery with machine learning algorithms, and assessment of carbon stored by urban trees. To the best of our knowledge, this is the first study that estimates carbon storage for a region in Africa following the guidelines from the Intergovernmental Panel on Climate Change (IPCC).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源