论文标题

调度:网络物理系统的设计空间探索

DISPATCH: Design Space Exploration of Cyber-Physical Systems

论文作者

Terway, Prerit, Hamidouche, Kenza, Jha, Niraj K.

论文摘要

网络物理系统(CPSS)的设计是一项艰巨的任务,涉及在各种CPS配置的大搜索空间以及组成系统组件的可能值的搜索空间上进行搜索。因此,需要样品有效的CPS设计空间探索来选择满足目标系统要求的系统体系结构和组件值。我们通过将CPS设计作为多目标优化问题来应对这一挑战,并提出了Dispatch,这是一种在设计空间上进行样本有效搜索的两步方法。首先,我们使用遗传算法来搜索用于体系结构搜索和组件选择的系统组件值的离散选择,或者仅在满足系统要求之前终止算法,从而产生粗糙的设计。在第二步中,我们使用逆设计在连续的空间上进行搜索,以微调组件值并满足各种系统要求集。我们将神经网络用作系统逆设计的替代功能。神经网络转换为混合成员线性程序,用于主动学习,以在连续的搜索空间中有效地采样组件值。我们说明了派遣在电路基准测试中的疗效:两阶段和三阶段的跨阻止器。仿真结果表明,与依靠增强学习的先前合成方法相比,所提出的方法可以提高样品效率5-14x。与使用增强学习,贝叶斯优化或人类合成的设计相比,它还以最佳性能(最高带宽/最低区域)合成电路。

Design of cyber-physical systems (CPSs) is a challenging task that involves searching over a large search space of various CPS configurations and possible values of components composing the system. Hence, there is a need for sample-efficient CPS design space exploration to select the system architecture and component values that meet the target system requirements. We address this challenge by formulating CPS design as a multi-objective optimization problem and propose DISPATCH, a two-step methodology for sample-efficient search over the design space. First, we use a genetic algorithm to search over discrete choices of system component values for architecture search and component selection or only component selection and terminate the algorithm even before meeting the system requirements, thus yielding a coarse design. In the second step, we use an inverse design to search over a continuous space to fine-tune the component values and meet the diverse set of system requirements. We use a neural network as a surrogate function for the inverse design of the system. The neural network, converted into a mixed-integer linear program, is used for active learning to sample component values efficiently in a continuous search space. We illustrate the efficacy of DISPATCH on electrical circuit benchmarks: two-stage and three-stage transimpedence amplifiers. Simulation results show that the proposed methodology improves sample efficiency by 5-14x compared to a prior synthesis method that relies on reinforcement learning. It also synthesizes circuits with the best performance (highest bandwidth/lowest area) compared to designs synthesized using reinforcement learning, Bayesian optimization, or humans.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源