论文标题
在算术和理性中存在特殊收藏的后果
Consequences of the existence of exceptional collections in arithmetic and rationality
论文作者
论文摘要
奥尔洛夫(Orlov)的一个众所周知的猜想询问是否存在完整的特殊集合是否意味着基本品种的合理性。我们证明了算术曲折品种在一般领域上的猜想。我们还研究了该猜想的轻微概括,其中允许特殊对象的内态代数为基础场的可分离场扩展。我们表明,通过在有理性数字的领域表现出几何理性,平滑,三重的三倍,该领域具有完整的典范,但不是理性的观点,这是错误的。反例来自扭曲非逆向理性品种,并具有理性的观点和由Brauer不变的Torsor所见的完整典范的外观收藏。一路上,我们开发了一些线性化对象的工具,包括控制线性化的组。
A well-known conjecture of Orlov asks whether the existence of a full exceptional collection implies rationality of the underlying variety. We prove this conjecture for arithmetic toric varieties over general fields. We also investigate a slight generalization of this conjecture, where the endomorphism algebras of the exceptional objects are allowed to be separable field extensions of the base field. We show this generalization is false by exhibiting a geometrically rational, smooth, projective threefold over the the field of rational numbers that possesses a full étale-exceptional collection but not a rational point. The counterexample comes from twisting a non-retract rational variety with a rational point and full étale-exceptional collection by a torsor that is invisible to Brauer invariants. Along the way, we develop some tools for linearizing objects, including a group that controls linearizations.