论文标题

“当他们说杂草会引起抑郁症时,但这是您最喜欢的抗抑郁药”:知识吸引的关注框架

"When they say weed causes depression, but it's your fav antidepressant": Knowledge-aware Attention Framework for Relationship Extraction

论文作者

Yadav, Shweta, Lokala, Usha, Daniulaityte, Raminta, Thirunarayan, Krishnaprasad, Lamy, Francois, Sheth, Amit

论文摘要

随着大麻医学和娱乐性使用的越来越多的合法化,需要更多的研究来了解抑郁症与消费大麻消费有关的消费者行为之间的关联。大型社交媒体数据有可能向公共卫生分析师提供有关这些关联的更深入见解。在这项跨学科研究中,我们证明了将特定领域的知识纳入学习过程中的价值,以确定大麻使用与抑郁症之间的关系。我们开发了一个注入深度学习框架(Gated-K-Bert)的端到端知识,该框架利用了预先训练的BERT语言表示模型和特定领域的声明知识来源(药物滥用本体(DAO)),使用门控融合共享机制共同提取实体及其关系。我们的模型进一步量身定制,以通过实体 - 位置意识关注层在句子中提及的实体,在该句子中使用本体来定位目标实体位置。实验结果表明,与最新的关系提取器相比,将知识吸引的专注表示与BERT相关的覆盖范围可以提取大麻抑郁的关系。

With the increasing legalization of medical and recreational use of cannabis, more research is needed to understand the association between depression and consumer behavior related to cannabis consumption. Big social media data has potential to provide deeper insights about these associations to public health analysts. In this interdisciplinary study, we demonstrate the value of incorporating domain-specific knowledge in the learning process to identify the relationships between cannabis use and depression. We develop an end-to-end knowledge infused deep learning framework (Gated-K-BERT) that leverages the pre-trained BERT language representation model and domain-specific declarative knowledge source (Drug Abuse Ontology (DAO)) to jointly extract entities and their relationship using gated fusion sharing mechanism. Our model is further tailored to provide more focus to the entities mention in the sentence through entity-position aware attention layer, where ontology is used to locate the target entities position. Experimental results show that inclusion of the knowledge-aware attentive representation in association with BERT can extract the cannabis-depression relationship with better coverage in comparison to the state-of-the-art relation extractor.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源