论文标题
数据驱动的耦合振荡器的粗粒模型选择
Data-driven Selection of Coarse-Grained Models of Coupled Oscillators
论文作者
论文摘要
在复杂的动态系统中,系统发现的多尺度过程的减少订购闭合模型仍然是一个重要的开放问题。即使存在有效的低维度表示,使用仅使用分析方法也很难获得减少的模型。为了找到多尺度现象的这种粗粒剂表示的严格方法,将实现加速的计算模拟,并提供对复杂动态感兴趣动态的基本见解。我们专注于库拉莫托类型的振荡器的异质种群,作为复杂动力学的规范模型,并开发了一种数据驱动的方法来推断其粗粒度描述。我们的方法基于在热力学极限中通过分析推导告知的一般运动方程中系数的数值优化。我们表明,需要某些假设才能获得自主的粗粒运动方程。但是,优化系数值可实现具有概念上不同功能形式的粗粒模型,但具有可比的表示形式,以提供基础系统的准确减少级描述。
Systematic discovery of reduced-order closure models for multi-scale processes remains an important open problem in complex dynamical systems. Even when an effective lower-dimensional representation exists, reduced models are difficult to obtain using solely analytical methods. Rigorous methodologies for finding such coarse-grained representations of multi-scale phenomena would enable accelerated computational simulations and provide fundamental insights into the complex dynamics of interest. We focus on a heterogeneous population of oscillators of Kuramoto type as a canonical model of complex dynamics, and develop a data-driven approach for inferring its coarse-grained description. Our method is based on a numerical optimization of the coefficients in a general equation of motion informed by analytical derivations in the thermodynamic limit. We show that certain assumptions are required to obtain an autonomous coarse-grained equation of motion. However, optimizing coefficient values enables coarse-grained models with conceptually disparate functional forms, yet comparable quality of representation, to provide accurate reduced-order descriptions of the underlying system.