论文标题

光子超沉淀的淬灭机制

Quenching Mechanisms of Photon Superradiance

论文作者

Blas, Diego, Witte, Samuel J.

论文摘要

已知快速旋转的黑洞在足够轻玻色子的情况下会发展不稳定性,当玻色子的康普顿波长大致与黑洞的大小大小时,该过程变得有效。这种现象被称为黑洞超级,以呈指数型生长的玻色子云,而牺牲了黑洞的旋转能量。对于带有$ M \ sim \ Mathcal {o}(10)\,M_ \ odot $的天体物理黑洞,对于具有$ M_B \ sim \ sim \ Mathcal {O}(10^{ - 11}})的玻色子,可以实现超级状态有趣的是,横穿层间培养基(IGM)的光子自然地驻留在该范围内的有效质量(由于它们与环境等离子体的相互作用)。光子超高的含义,即在存在散射和颗粒产生过程中超级光子云和环境等离子体的演化,尚待进行彻底研究。在这里,我们列举并讨论了许多能够淬灭光子云的生长的不同过程,包括与环境电子的粒子相互作用以及对有效质量的反反应(例如,由热效应,成对产生,局部背景的离子化,局部背景的电离以及与强电场的分散相关性的修改)。这项工作自然是了解相互作用如何允许光奇异玻色子逃避超级限制的指南。

Rapidly rotating black holes are known to develop instabilities in the presence of a sufficiently light boson, a process which becomes efficient when the boson's Compton wavelength is roughly the size of the black hole. This phenomenon, known as black hole superradiance, generates an exponentially growing boson cloud at the expense of the rotational energy of the black hole. For astrophysical black holes with $M \sim \mathcal{O}(10) \, M_\odot$, the superradiant condition is achieved for bosons with $m_b \sim \mathcal{O}(10^{-11} ) \, {\rm eV}$; intriguingly, photons traversing the intergalactic medium (IGM) acquire an effective mass (due to their interactions with the ambient plasma) which naturally resides in this range. The implications of photon superradiance, i.e. the evolution of the superradiant photon cloud and ambient plasma in the presence of scattering and particle production processes, have yet to be thoroughly investigated. Here, we enumerate and discuss a number of different processes capable of quenching the growth of the photon cloud, including particle interactions with the ambient electrons and back-reactions on the effective mass (arising e.g. from thermal effects, pair-production, ionization of of the local background, and modifications to the dispersion relation from strong electric fields). This work naturally serves as a guide in understanding how interactions may allow light exotic bosons to evade superradiant constraints.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源