论文标题

与混合专家的跨模式对齐神经网络用于城市内零售建议

Cross-Modal Alignment with Mixture Experts Neural Network for Intral-City Retail Recommendation

论文作者

Li, Po, Li, Lei, Fu, Yan, Rong, Jun, Zhang, Yu

论文摘要

在本文中,我们引入了与混合专家神经网络(Camenn)的跨模式对齐,用于城市内零售业的推荐模型,该模型旨在在5小时内提供新鲜食品和杂货零售服务,以在5小时内为冠状病毒疾病爆发(Covid-19)爆发,而全世界则是全世界。我们提出了Camenn,这是一个多任务模型,具有三个任务,包括图像到文本对齐(ITA)任务,文本到图像对齐任务(TIA)任务和CVR预测任务。我们使用预训练的BERT生成文本嵌入和预训练的InctepionV4来生成图像贴片嵌入(每个图像都用相同的像素分成小贴片,并将每个贴片视为图像令牌)。 SoftMax门控网络遵循,以了解每个变压器专家输出的权重,并仅选择在输入上以条件为条件的专家。然后将变压器编码器应用于共享底层,以了解所有输入功能的共享交互。接下来,实施了变压器专家(MOE)层的混合物来建模任务的不同方面。在MOE层的顶部,我们将每个任务的变压器层用于任务塔,以学习特定于任务的信息。在真实词内的城市内数据集上,实验证明了Camenn优于基础线,并在图像和文本表示方面取得了重大改进。实际上,我们在我们的城市内推荐系统中应用了CVR预测,该系统是中国运营的领先城市内平台之一。

In this paper, we introduce Cross-modal Alignment with mixture experts Neural Network (CameNN) recommendation model for intral-city retail industry, which aims to provide fresh foods and groceries retailing within 5 hours delivery service arising for the outbreak of Coronavirus disease (COVID-19) pandemic around the world. We propose CameNN, which is a multi-task model with three tasks including Image to Text Alignment (ITA) task, Text to Image Alignment (TIA) task and CVR prediction task. We use pre-trained BERT to generate the text embedding and pre-trained InceptionV4 to generate image patch embedding (each image is split into small patches with the same pixels and treat each patch as an image token). Softmax gating networks follow to learn the weight of each transformer expert output and choose only a subset of experts conditioned on the input. Then transformer encoder is applied as the share-bottom layer to learn all input features' shared interaction. Next, mixture of transformer experts (MoE) layer is implemented to model different aspects of tasks. At top of the MoE layer, we deploy a transformer layer for each task as task tower to learn task-specific information. On the real word intra-city dataset, experiments demonstrate CameNN outperform baselines and achieve significant improvements on the image and text representation. In practice, we applied CameNN on CVR prediction in our intra-city recommender system which is one of the leading intra-city platforms operated in China.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源