论文标题
量子随机能模型的平衡相图
Out of equilibrium Phase Diagram of the Quantum Random Energy Model
论文作者
论文摘要
在本文中,我们研究了德里达随机能量模型的量子版本的平衡外相图,这是平均场自旋玻璃的最简单模型。我们将其在Fock空间中的相应量子动力学解释为一个非常高的尺寸的单粒子问题,我们应用了针对高维晶格量身定制的不同理论方法:向前散射的近似值,对Rosenzweig-Porter模型的映射和腔方法。我们的结果表明存在两个过渡线和三个不同的动态阶段:一个完全多体的局部相位,在低能量下,高能量处的完全千古相,以及中间能量的多重型“不良金属”相。在后者中,本征函数占据了不同的体积,但呈指数却消失了希尔伯特空间的一部分。我们讨论了我们近似的局限性以及与以前的研究的关系。
In this paper we study the out-of-equilibrium phase diagram of the quantum version of Derrida's Random Energy Model, which is the simplest model of mean-field spin glasses. We interpret its corresponding quantum dynamics in Fock space as a one-particle problem in very high dimension to which we apply different theoretical methods tailored for high-dimensional lattices: the Forward-Scattering Approximation, a mapping to the Rosenzweig-Porter model, and the cavity method. Our results indicate the existence of two transition lines and three distinct dynamical phases: a completely many-body localized phase at low energy, a fully ergodic phase at high energy, and a multifractal "bad metal" phase at intermediate energy. In the latter, eigenfunctions occupy a diverging volume, yet an exponentially vanishing fraction of the total Hilbert space. We discuss the limitations of our approximations and the relationship with previous studies.