论文标题

改善$ t $ tours的最佳奇异基督油

Improving on Best-of-Many-Christofides for $T$-tours

论文作者

Traub, Vera

论文摘要

$ t $ -TOR问题是TSP和PATH TSP的自然概括。给定图形$ g =(v,e)$,边缘成本$ c:e \ to \ to \ mathbb {r} _ {\ ge 0} $,均匀的基数set $ t \ subseteq v $,我们想计算最低cost $ t $ t $ - join连接所有$ g $ $ g $的$ g $(以及可能包含的平行edges)。 在本文中,我们给出了$ \ frac {11} {7} $ - $ t $ - toR问题的近似值,并证明标准LP放松的整体率最多是$ \ frac {11} {7} {7} $。尽管特殊案例路径TSP取得了很大进展,但对于一般$ t $ - tours,这是Sebő对最佳奇异 - 克里斯托弗斯算法的分析的第一个改进(SEBő[2013])。

The $T$-tour problem is a natural generalization of TSP and Path TSP. Given a graph $G=(V,E)$, edge cost $c: E \to \mathbb{R}_{\ge 0}$, and an even cardinality set $T\subseteq V$, we want to compute a minimum-cost $T$-join connecting all vertices of $G$ (and possibly containing parallel edges). In this paper we give an $\frac{11}{7}$-approximation for the $T$-tour problem and show that the integrality ratio of the standard LP relaxation is at most $\frac{11}{7}$. Despite much progress for the special case Path TSP, for general $T$-tours this is the first improvement on Sebő's analysis of the Best-of-Many-Christofides algorithm (Sebő [2013]).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源