论文标题

在计算机断层扫描中使用卷积神经网络改善自动化的Covid-19分级:一项消融研究

Improving Automated COVID-19 Grading with Convolutional Neural Networks in Computed Tomography Scans: An Ablation Study

论文作者

de Vente, Coen, Boulogne, Luuk H., Venkadesh, Kiran Vaidhya, Sital, Cheryl, Lessmann, Nikolas, Jacobs, Colin, Sánchez, Clara I., van Ginneken, Bram

论文摘要

在正在进行的大流行中,几项研究表明,使用计算机断层扫描(CT)图像的COVID-19分类和分级可以与卷积神经网络(CNN)自动化。这些研究中的许多研究重点是报告从常用组件组装的算法的初始结果。这些组件的选择通常是务实的,而不是系统的。例如,尽管这些研究可能不是处理3D CT体积的最佳选择,但使用了2D CNN。本文确定了各种组件,这些组件会增加CT图像中CNN基于CNN的算法的性能。我们研究了使用3D CNN代替2D CNN的有效性,该有效性是使用传输学习来初始化网络,即提供自动计算的病变图作为附加网络输入,并预测连续而不是分类输出。具有这些组件的3D CNN在我们的105 CT扫描测试集中,在ROC曲线(AUC)下达到了一个面积为0.934,在公开可用的742 CT扫描中,AUC的AUC为0.923,与先前发布的2D CNN的比较相比进行了实质性改进。一项消融研究表明,除了使用3D CNN而不是2D CNN转移学习外,最大程度最大的输出对改善模型性能的贡献最小。

Amidst the ongoing pandemic, several studies have shown that COVID-19 classification and grading using computed tomography (CT) images can be automated with convolutional neural networks (CNNs). Many of these studies focused on reporting initial results of algorithms that were assembled from commonly used components. The choice of these components was often pragmatic rather than systematic. For instance, several studies used 2D CNNs even though these might not be optimal for handling 3D CT volumes. This paper identifies a variety of components that increase the performance of CNN-based algorithms for COVID-19 grading from CT images. We investigated the effectiveness of using a 3D CNN instead of a 2D CNN, of using transfer learning to initialize the network, of providing automatically computed lesion maps as additional network input, and of predicting a continuous instead of a categorical output. A 3D CNN with these components achieved an area under the ROC curve (AUC) of 0.934 on our test set of 105 CT scans and an AUC of 0.923 on a publicly available set of 742 CT scans, a substantial improvement in comparison with a previously published 2D CNN. An ablation study demonstrated that in addition to using a 3D CNN instead of a 2D CNN transfer learning contributed the most and continuous output contributed the least to improving the model performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源