论文标题
通过Carleman估计,确定一个空间组件独立性确定功能的逆抛物线问题
Inverse parabolic problems of determining functions with one spatial-component independence by Carleman estimate
论文作者
论文摘要
对于空间变量中的抛物线方程的初始有限值问题,$ x =(x_1,..,x_n)$和time $ t $,我们考虑了一个逆问题,即确定一个与一个空间组件$ x_n $独立于额外横向边界数据的系数。我们应用卡尔曼估计值以证明反问题的有条件稳定性估计。同样,我们证明了相应的逆源问题的相似结果。
For an initial-boundary value problem for a parabolic equation in the spatial variable $x=(x_1,.., x_n)$ and time $t$, we consider an inverse problem of determining a coefficient which is independent of one spatial component $x_n$ by extra lateral boundary data. We apply a Carleman estimate to prove a conditional stability estimate for the inverse problem. Also we prove similar results for the corresponding inverse source problem.