论文标题

关于随机3D Euler方程的耗散蛋白质解决方案的不良和良好性

On ill- and well-posedness of dissipative martingale solutions to stochastic 3D Euler equations

论文作者

Hofmanová, Martina, Zhu, Rongchan, Zhu, Xiangchan

论文摘要

我们关注的是随机三维不可压缩的欧拉方程的问题。特别是,我们介绍了一类新颖的耗散解决方案,并表明了(i)存在; (ii)虚弱的独特性; (iii)法律上的非唯一性; (iv)存在强大的马尔可夫解决方案; (v)强大的马尔可夫解决方案的非唯一性;在这个课程中所有这些都保持真实。此外,作为(iii)的副产品,我们获得了概率强的和分析性较弱的解决方案的存在和非唯一性,直到停止时间并满足能量不平等。

We are concerned with the question of well-posedness of stochastic three dimensional incompressible Euler equations. In particular, we introduce a novel class of dissipative solutions and show that (i) existence; (ii) weak--strong uniqueness; (iii) non-uniqueness in law; (iv) existence of a strong Markov solution; (v) non-uniqueness of strong Markov solutions; all hold true within this class. Moreover, as a byproduct of (iii) we obtain existence and non-uniqueness of probabilistically strong and analytically weak solutions defined up to a stopping time and satisfying an energy inequality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源