论文标题
具有随机风驱动边界条件的原始方程
The primitive equations with stochastic wind driven boundary conditions
论文作者
论文摘要
在{\ em随机风驱动的边界条件的影响下研究地球物理流的原始方程。我们适应了da Prato和Zabczyk的一种随机边界价值问题,以定义解决方案的概念。然后,对这些随机和确定性方法的这些随机边界条件进行了严格处理,使这些方程在各向异性$ l^q_t $ - $ h^{ - 1,p} _zl^_zl^p_ p_ p_ {xy} $ - 设置中允许独特的局部路径溶液。该解决方案是在临界空间中构建的。
The primitive equations for geophysical flows are studied under the influence of {\em stochastic wind driven boundary conditions} modeled by a cylindrical Wiener process. We adapt an approach by Da Prato and Zabczyk for stochastic boundary value problems to define a notion of solutions. Then a rigorous treatment of these stochastic boundary conditions, which combines stochastic and deterministic methods, yields that these equations admit a unique, local pathwise solution within the anisotropic $L^q_t$-$H^{-1,p}_zL^p_{xy}$-setting. This solution is constructed in critical spaces.