论文标题

从未标记的数据对学习谎言代数

Learning a Lie Algebra from Unlabeled Data Pairs

论文作者

Ick, Christopher, Lostanlen, Vincent

论文摘要

深度卷积网络(Convnets)表现出了非凡的学习解开表示的能力。近年来,深入学习对超出刚性运动超出$ \ mathbb {r}^n $的僵化运动的概括已允许在具有非平凡对称性的数据集上构建convnets,例如在球体表面上的模式。但是,这种方法的一个局限性是需要在训练Convnet之前明确定义所需不变性属性的谎言组。尽管球体上的旋转有一个众所周知的对称组($ \ mathrm {so}(3)$),但对于许多真实世界的可变性因素,也不能说相同。例如,在音乐信息检索中,音高,强度动态和演奏技术的分离仍然是一项艰巨的任务。 本文提出了一种机器学习方法,以发现空间$ \ mathbb {r}^n $的非线性转换,该方法映射了$ n $ dimensional vectors $(\ boldsymbol {x} _i)_i $的集合到目标vectors $(\ boldsymbol {y boldsymbol {y} _i _i $。关键想法是通过矩阵 - 向量$ $ \ boldsymbol {\ widetilde {y}} _ i = \ boldsymbolx(t_i)\ boldsymbol {x} _i $ a $ y y a y a y a y a y y a y y y y y a _i $ bolds $ boldsbolt a y a y y a y a y a y a y a y a y a y a y a y a y a y a y a y a y a y a y y a y y a ix $ bolds $ boldsbol, $ \ mathrm {gl} _n(\ mathbb {r})$的单参数子组。至关重要的是,参数$ t_i \ in \ mathbb {r} $的值可能会在数据对之间发生变化$(\ boldsymbol {x} _i,\ boldsymbol {y} _i)$,并且不需要提前知道。

Deep convolutional networks (convnets) show a remarkable ability to learn disentangled representations. In recent years, the generalization of deep learning to Lie groups beyond rigid motion in $\mathbb{R}^n$ has allowed to build convnets over datasets with non-trivial symmetries, such as patterns over the surface of a sphere. However, one limitation of this approach is the need to explicitly define the Lie group underlying the desired invariance property before training the convnet. Whereas rotations on the sphere have a well-known symmetry group ($\mathrm{SO}(3)$), the same cannot be said of many real-world factors of variability. For example, the disentanglement of pitch, intensity dynamics, and playing technique remains a challenging task in music information retrieval. This article proposes a machine learning method to discover a nonlinear transformation of the space $\mathbb{R}^n$ which maps a collection of $n$-dimensional vectors $(\boldsymbol{x}_i)_i$ onto a collection of target vectors $(\boldsymbol{y}_i)_i$. The key idea is to approximate every target $\boldsymbol{y}_i$ by a matrix--vector product of the form $\boldsymbol{\widetilde{y}}_i = \boldsymbolϕ(t_i) \boldsymbol{x}_i$, where the matrix $\boldsymbolϕ(t_i)$ belongs to a one-parameter subgroup of $\mathrm{GL}_n (\mathbb{R})$. Crucially, the value of the parameter $t_i \in \mathbb{R}$ may change between data pairs $(\boldsymbol{x}_i, \boldsymbol{y}_i)$ and does not need to be known in advance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源