论文标题

对植物plantclef 2020挑战的部分领域适应的对抗性一致学习

Adversarial Consistent Learning on Partial Domain Adaptation of PlantCLEF 2020 Challenge

论文作者

Zhang, Youshan, Davison, Brian D.

论文摘要

域的适应性是减轻域移位问题的最关键技术之一,当将知识从丰富的标记的源域转移到少量或没有标签的目标域时,这些技术就存在。当目标类别只是源类别的一个子集时,部分域的适应解决了方案。在本文中,为了使跨域植物图像的有效表示,我们首先从预训练的模型中提取深度特征,然后在统一的深层建筑中开发对抗性一致的学习($ acl $),以进行部分域的适应。它包括源域分类损失,对抗性学习损失和特征一致性损失。对抗性学习损失可以维持源和目标域之间的域不变特征。此外,特征一致性损失可以保留两个域之间的细粒特征过渡。我们还通过下调源域中的无关类别来找到两个域的共享类别。实验结果表明,NASNETLARGE模型的训练功能具有拟议的$ ACL $体系结构在Plantclef 2020挑战中产生了令人鼓舞的结果。

Domain adaptation is one of the most crucial techniques to mitigate the domain shift problem, which exists when transferring knowledge from an abundant labeled sourced domain to a target domain with few or no labels. Partial domain adaptation addresses the scenario when target categories are only a subset of source categories. In this paper, to enable the efficient representation of cross-domain plant images, we first extract deep features from pre-trained models and then develop adversarial consistent learning ($ACL$) in a unified deep architecture for partial domain adaptation. It consists of source domain classification loss, adversarial learning loss, and feature consistency loss. Adversarial learning loss can maintain domain-invariant features between the source and target domains. Moreover, feature consistency loss can preserve the fine-grained feature transition between two domains. We also find the shared categories of two domains via down-weighting the irrelevant categories in the source domain. Experimental results demonstrate that training features from NASNetLarge model with proposed $ACL$ architecture yields promising results on the PlantCLEF 2020 Challenge.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源