论文标题
$ \ mathbb {p}^k $的biraitonal地图的等级定理
An equidistribution theorem for biraitonal maps of $\mathbb{P}^k$
论文作者
论文摘要
我们证明了某种类别的Birational Maps $ f _+:\ Mathbb {p}^k \ to \ Mathbb {p}^k $ oferbraic $ d \ geq 2 $满足$ \ big big big big geq 0} f _^n( \ bigCup_ {n \ geq 0} f _+^n(i^ - )= \ emptyset $,其中$ f _- $是$ f _+$和$ i^\ pm $的倒数,分别是$ f_ \ pm $的一组不确定性。
We prove an equidistribution theorem of positive closed currents for a certain class of birational maps $f_+:\mathbb{P}^k\to\mathbb{P}^k$ of algebraic degree $d\geq 2$ satisfying $\bigcup_{n\geq 0}f_-^n(I^+)\cap \bigcup_{n\geq 0}f_+^n(I^-)=\emptyset$, where $f_-$ is the inverse of $f_+$ and $I^\pm$ are the sets of indeterminacy for $f_\pm$, respectively.