论文标题

时间序列预测的可解释的可提高线性回归

Explainable boosted linear regression for time series forecasting

论文作者

Ilic, Igor, Gorgulu, Berk, Cevik, Mucahit, Baydogan, Mustafa Gokce

论文摘要

时间序列的预测涉及收集和分析过去的观察结果,以开发一个模型,以推断这种观察到未来。在许多领域中,对未来事件的预测非常重要,以支持决策,因为这有助于减少未来的不确定性。我们提出了可解释的增强线性回归(EBLR)算法的时间序列预测,这是一种迭代方法,以基本模型开头,并通过回归树解释了模型的错误。在每次迭代中,导致最高误差的路径被添加为基本模型的新变量。在这方面,我们的方法可以被视为对一般时间序列模型的改进,因为它可以通过残差解释纳入非线性特征。更重要的是,使用最大程度限制错误的单一规则允许可解释的结果。提出的方法通过基于经验误差分布生成预测间隔扩展到概率预测。我们对EBLR进行了详细的数值研究,并与其他各种方法进行了比较。我们观察到EBLR通过提取的功能实质上改善了基本模型性能,并提供了与其他良好方法的可比性能。模型预测的解释性和EBLR的高预测精度使其成为时间序列预测的有前途的方法。

Time series forecasting involves collecting and analyzing past observations to develop a model to extrapolate such observations into the future. Forecasting of future events is important in many fields to support decision making as it contributes to reducing the future uncertainty. We propose explainable boosted linear regression (EBLR) algorithm for time series forecasting, which is an iterative method that starts with a base model, and explains the model's errors through regression trees. At each iteration, the path leading to highest error is added as a new variable to the base model. In this regard, our approach can be considered as an improvement over general time series models since it enables incorporating nonlinear features by residuals explanation. More importantly, use of the single rule that contributes to the error most allows for interpretable results. The proposed approach extends to probabilistic forecasting through generating prediction intervals based on the empirical error distribution. We conduct a detailed numerical study with EBLR and compare against various other approaches. We observe that EBLR substantially improves the base model performance through extracted features, and provide a comparable performance to other well established approaches. The interpretability of the model predictions and high predictive accuracy of EBLR makes it a promising method for time series forecasting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源