论文标题

因果统治合奏:可解释的发现和推理异质治疗效果

Causal Rule Ensemble: Interpretable Discovery and Inference of Heterogeneous Treatment Effects

论文作者

Bargagli-Stoffi, Falco J., Cadei, Riccardo, Lee, Kwonsang, Dominici, Francesca

论文摘要

在健康和社会科学中,确定研究人群的亚组非常重要,在该研究人群相对于人口平均水平的异质性(HTE)。由于HTE的高度可解释性,因此提出了决策树,并且通常用于数据驱动的HTE。但是,HTE的单树发现可能是不稳定和简化的。本文介绍了因果规则集合(CRE),这是一种使用树木合奏方法进行HTE发现和估算的新方法。 CRE提供了几个关键功能,包括1)HTE的可解释表示; 2)探索复杂异质性模式的能力; 3)亚组发现中的高稳定性。发现的亚组是根据可解释的决策规则定义的。亚组特异性因果效应的估计是通过两阶段方法进行的,我们为此提供理论保证。通过模拟,我们表明,与最新技术相比,CRE方法具有很高的竞争力。最后,我们应用CRE发现暴露于空气污染对3530万Medicare受益人的死亡率的异质健康影响

In health and social sciences, it is critically important to identify subgroups of the study population where there is notable heterogeneity of treatment effects (HTE) with respect to the population average. Decision trees have been proposed and commonly adopted for the data-driven discovery of HTE due to their high level of interpretability. However, single-tree discovery of HTE can be unstable and oversimplified. This paper introduces the Causal Rule Ensemble (CRE), a new method for HTE discovery and estimation using an ensemble-of-trees approach. CRE offers several key features, including 1) an interpretable representation of the HTE; 2) the ability to explore complex heterogeneity patterns; and 3) high stability in subgroups discovery. The discovered subgroups are defined in terms of interpretable decision rules. Estimation of subgroup-specific causal effects is performed via a two-stage approach, for which we provide theoretical guarantees. Through simulations, we show that the CRE method is highly competitive compared to state-of-the-art techniques. Finally, we apply CRE to discover the heterogeneous health effects of exposure to air pollution on mortality for 35.3 million Medicare beneficiaries across the contiguous U.S.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源