论文标题

彗星:MT评估的神经框架

COMET: A Neural Framework for MT Evaluation

论文作者

Rei, Ricardo, Stewart, Craig, Farinha, Ana C, Lavie, Alon

论文摘要

我们提出了彗星,这是一种用于培训多语言机器翻译评估模型的神经框架,该模型获得了与人类判断的最新相关性的新水平。我们的框架利用了跨语性审计的语言建模的最新突破,从而导致高度多语言和适应性的MT评估模型,这些模型从源输入和目标语言参考转换中利用信息,以更准确地预测MT质量。为了展示我们的框架,我们培训了三个具有不同类型的人类判断的模型:直接评估,人介导的翻译编辑率和多维质量指标。我们的模型在WMT 2019指标共享任务上实现了新的最新性能,并证明了对高性能系统的鲁棒性。

We present COMET, a neural framework for training multilingual machine translation evaluation models which obtains new state-of-the-art levels of correlation with human judgements. Our framework leverages recent breakthroughs in cross-lingual pretrained language modeling resulting in highly multilingual and adaptable MT evaluation models that exploit information from both the source input and a target-language reference translation in order to more accurately predict MT quality. To showcase our framework, we train three models with different types of human judgements: Direct Assessments, Human-mediated Translation Edit Rate and Multidimensional Quality Metrics. Our models achieve new state-of-the-art performance on the WMT 2019 Metrics shared task and demonstrate robustness to high-performing systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源