论文标题
抗铁磁域壁的纳米级力学
Nanoscale mechanics of antiferromagnetic domain walls
论文作者
论文摘要
防铁磁铁为未来的Spintronics设备提供了巨大的希望,在该设备中,抗铁磁秩序被利用以编码信息。抗铁磁域壁(DWS)的控制和理解 - 具有不同顺序参数方向的域之间的界面 - 是推进此类抗磁性自旋技术技术的关键要素。然而,对单个抗铁磁DW的内在力学的研究仍然难以捉摸,因为它们需要足够的纯材料和适当的实验方法来解决纳米级的DW。在这里,我们在Cr $ _2 $ o $ $ _3 $的单一晶体中构成了180°DW,这是一种典型的共线磁电磁反铁磁铁,并研究了它们与样品上构造的地形特征的相互作用。我们通过由此产生的工程能量景观证明了DW操纵,并证明观察到的相互作用受DW的弹性特性的控制。我们的结果提高了对抗铁磁铁中DW力学的理解,并提出了一种基于抗铁磁DWS的新颖,地形定义的记忆结构。
Antiferromagnets offer remarkable promise for future spintronics devices, where antiferromagnetic order is exploited to encode information. The control and understanding of antiferromagnetic domain walls (DWs) - the interfaces between domains with differing order parameter orientations - is a key ingredient for advancing such antiferromagnetic spintronics technologies. However, studies of the intrinsic mechanics of individual antiferromagnetic DWs remain elusive since they require sufficiently pure materials and suitable experimental approaches to address DWs on the nanoscale. Here we nucleate isolated, 180° DWs in a single-crystal of Cr$_2$O$_3$, a prototypical collinear magnetoelectric antiferromagnet, and study their interaction with topographic features fabricated on the sample. We demonstrate DW manipulation through the resulting, engineered energy landscape and show that the observed interaction is governed by the DW's elastic properties. Our results advance the understanding of DW mechanics in antiferromagnets and suggest a novel, topographically defined memory architecture based on antiferromagnetic DWs.