论文标题
神经公平协作过滤
Neural Fair Collaborative Filtering
论文作者
论文摘要
越来越多的人类互动将在社交媒体平台上进行数字化并进行算法决策,并且确保这些算法得到公平治疗变得越来越重要。在这项工作中,我们在社交媒体数据培训的协作过滤推荐系统中调查了性别偏见。我们开发了神经公平协作过滤(NFCF),这是一种使用前训练和微调的神经协作过滤的方法来减轻敏感项目(例如工作,学术集中或学习课程),以减轻性别偏见的实用框架,以增强偏见矫正技术。我们分别显示了对Movielens数据集和Facebook数据集的性别偏见职业和大学的主要建议的实用性,并比几种最先进的模型实现了更好的性能和更公平的行为。
A growing proportion of human interactions are digitized on social media platforms and subjected to algorithmic decision-making, and it has become increasingly important to ensure fair treatment from these algorithms. In this work, we investigate gender bias in collaborative-filtering recommender systems trained on social media data. We develop neural fair collaborative filtering (NFCF), a practical framework for mitigating gender bias in recommending sensitive items (e.g. jobs, academic concentrations, or courses of study) using a pre-training and fine-tuning approach to neural collaborative filtering, augmented with bias correction techniques. We show the utility of our methods for gender de-biased career and college major recommendations on the MovieLens dataset and a Facebook dataset, respectively, and achieve better performance and fairer behavior than several state-of-the-art models.