论文标题

HyperFair:一种柔和的整合公平标准的方法

HyperFair: A Soft Approach to Integrating Fairness Criteria

论文作者

Dickens, Charles, Singh, Rishika, Getoor, Lise

论文摘要

推荐系统正在跨越越来越多样化的领域,这些域可能会产生重大的社会和个人影响。因此,考虑公平是对此类系统的设计和评估的关键一步。在本文中,我们介绍了HyperFair,这是一个通用框架,用于在混合建议系统中执行柔软的公平约束。 HyperFair模型将公平指标的变化整合为关节推理目标函数的正则化。我们使用概率软逻辑实施我们的方法,并表明它特别适合此任务,因为它具有表现力,并且可以简洁且可解释的方式将结构约束添加到系统中。我们提出了两种采用我们介绍的方法的方法:首先作为概率软逻辑推荐系统模板的扩展;其次是一种公平的改造技术,可用于改善黑框模型的预测公平性。我们通过实施多个Hyperfair混合推荐人并将其与最先进的公平推荐人进行比较来验证我们的方法。我们还进行了实验,显示了我们方法对改造黑框模型的任务的有效性以及实施公平量和预测性能之间的权衡。

Recommender systems are being employed across an increasingly diverse set of domains that can potentially make a significant social and individual impact. For this reason, considering fairness is a critical step in the design and evaluation of such systems. In this paper, we introduce HyperFair, a general framework for enforcing soft fairness constraints in a hybrid recommender system. HyperFair models integrate variations of fairness metrics as a regularization of a joint inference objective function. We implement our approach using probabilistic soft logic and show that it is particularly well-suited for this task as it is expressive and structural constraints can be added to the system in a concise and interpretable manner. We propose two ways to employ the methods we introduce: first as an extension of a probabilistic soft logic recommender system template; second as a fair retrofitting technique that can be used to improve the fairness of predictions from a black-box model. We empirically validate our approach by implementing multiple HyperFair hybrid recommenders and compare them to a state-of-the-art fair recommender. We also run experiments showing the effectiveness of our methods for the task of retrofitting a black-box model and the trade-off between the amount of fairness enforced and the prediction performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源