论文标题

时空激活函数以绘制复杂的动力学系统

Spatio-Temporal Activation Function To Map Complex Dynamical Systems

论文作者

Mahendra, Parth

论文摘要

现实世界中的大多数受复杂而混乱的动力学系统的控制。所有这些动态系统都在使用神经网络对它们进行建模方面构成挑战。当前,Reservoir Computing是复发性神经网络的子集,可积极用于模拟复杂的动力系统。在这项工作中,提出了二维激活函数,其中包括一个额外的时间术语,以使其输出赋予动态行为。包括时间术语的包含改变了激活函数的基本性质,它提供了捕获时间序列数据的复杂动力学的能力,而无需依赖复发性神经网络。

Most of the real world is governed by complex and chaotic dynamical systems. All of these dynamical systems pose a challenge in modelling them using neural networks. Currently, reservoir computing, which is a subset of recurrent neural networks, is actively used to simulate complex dynamical systems. In this work, a two dimensional activation function is proposed which includes an additional temporal term to impart dynamic behaviour on its output. The inclusion of a temporal term alters the fundamental nature of an activation function, it provides capability to capture the complex dynamics of time series data without relying on recurrent neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源