论文标题

审查RNA二级结构预测的机器学习方法

Review of Machine-Learning Methods for RNA Secondary Structure Prediction

论文作者

Zhao, Qi, Zhao, Zheng, Fan, Xiaoya, Yuan, Zhengwei, Mao, Qian, Yao, Yudong

论文摘要

二级结构在确定非编码RNA的功能中起着重要作用。因此,识别RNA二级结构对于研究具有很大的价值。计算预测是预测RNA二级结构的主流方法。不幸的是,即使在过去40年中提出了新方法,但在过去的十年中,计算预测方法的性能已停滞不前。最近,随着RNA结构数据的可用性越来越多,基于机器学习技术(尤其是深度学习)的新方法可以减轻该问题。在这篇综述中,我们提供了基于机器学习技术的RNA二级结构预测方法的全面概述,以及该领域最重要方法的表格摘要。还讨论了RNA二级结构预测和未来趋势领域的当前未决问题。

Secondary structure plays an important role in determining the function of non-coding RNAs. Hence, identifying RNA secondary structures is of great value to research. Computational prediction is a mainstream approach for predicting RNA secondary structure. Unfortunately, even though new methods have been proposed over the past 40 years, the performance of computational prediction methods has stagnated in the last decade. Recently, with the increasing availability of RNA structure data, new methods based on machine-learning technologies, especially deep learning, have alleviated the issue. In this review, we provide a comprehensive overview of RNA secondary structure prediction methods based on machine-learning technologies and a tabularized summary of the most important methods in this field. The current pending issues in the field of RNA secondary structure prediction and future trends are also discussed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源