论文标题

反事实的解释和因果控制在机器人控制中的鲁棒性推断

Counterfactual Explanation and Causal Inference in Service of Robustness in Robot Control

论文作者

Smith, Simón C., Ramamoorthy, Subramanian

论文摘要

我们提出了一种用于培训形式反事实条件的生成模型的体系结构,“我们可以修改事件a以引起b而不是c?”,这是由机器人控制中的应用所激发的。使用“对抗性训练”范式,训练了基于图像的深神经网络模型,以对原始图像产生小而逼真的修改,以引起用户定义的效果。这些修改可用于基于图像的鲁棒控制的设计过程 - 确定控制器通过在输入空间中的修改而不是通过适应来返回工作状态的能力。与传统的控制设计方法相反,在拒绝噪声的能力方面量化了鲁棒性,我们探索了可能导致某些要求违反某些要求的反事实的空间,因此提出了在某些机器人应用中可能更具表现力的替代模型。因此,我们提出反事实的产生,以解释黑盒模型的解释,并设想自主机器人控制中的潜在运动路径。首先,我们使用众所周知的MNIST和Celebfaces属性数据集在一组分类任务中演示了这种方法。然后,在解决多维回归时,我们在使用物理机器人的到达任务中演示了我们的方法,并在数字双胞胎模拟中使用机器人进行导航任务。

We propose an architecture for training generative models of counterfactual conditionals of the form, 'can we modify event A to cause B instead of C?', motivated by applications in robot control. Using an 'adversarial training' paradigm, an image-based deep neural network model is trained to produce small and realistic modifications to an original image in order to cause user-defined effects. These modifications can be used in the design process of image-based robust control - to determine the ability of the controller to return to a working regime by modifications in the input space, rather than by adaptation. In contrast to conventional control design approaches, where robustness is quantified in terms of the ability to reject noise, we explore the space of counterfactuals that might cause a certain requirement to be violated, thus proposing an alternative model that might be more expressive in certain robotics applications. So, we propose the generation of counterfactuals as an approach to explanation of black-box models and the envisioning of potential movement paths in autonomous robotic control. Firstly, we demonstrate this approach in a set of classification tasks, using the well known MNIST and CelebFaces Attributes datasets. Then, addressing multi-dimensional regression, we demonstrate our approach in a reaching task with a physical robot, and in a navigation task with a robot in a digital twin simulation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源