论文标题

洛伦兹遇到了利普奇兹

Lorentz meets Lipschitz

论文作者

Lange, Christian, Lytchak, Alexander, Sämann, Clemens

论文摘要

我们表明,Lipschitz连续的Lorentzian Metric的最大因果曲线接纳了$ \ Mathcal {C}^{1,1} $ - 参数化,并且它们在此参数化中以Filippov的意义求解了地质方程。我们的证明表明,最大因果曲线要么在任何地方。此外,证明证明了$α$-Hölder连续的Lorentzian Metric的最大因果曲线允许$ \ Mathcal {C}^{1,\fracα{4}} $ -Amartetrization。

We show that maximal causal curves for a Lipschitz continuous Lorentzian metric admit a $\mathcal{C}^{1,1}$-parametrization and that they solve the geodesic equation in the sense of Filippov in this parametrization. Our proof shows that maximal causal curves are either everywhere lightlike or everywhere timelike. Furthermore, the proof demonstrates that maximal causal curves for an $α$-Hölder continuous Lorentzian metric admit a $\mathcal{C}^{1,\fracα{4}}$-parametrization.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源