论文标题
用于编纂,抗癌形式和物理应用的繁殖引理
The Poincare lemma for codifferential, anticoexact forms, and applications to physics
论文作者
论文摘要
关于Riemannian歧管上的编码算子的线性同义理论类似于外部衍生物的类似思想。主要对象是共同体操作员,它从歧管的星形开放子集上定义的差分形式的模块中挑出了抗脱粒的模块。结果表明,差分形式直接分解为伴侣和抗果糖部分。这种分解提供了一种解决外部差异系统的新方法。该方法应用于基本物理学方程,包括真空dirac-kähler方程,耦合的麦克斯韦 - 卡尔布 - 朗蒙德耦合在波索克弦理论中发生的方程式以及将其还原为dirac方程。
The linear homotopy theory for codifferential operator on Riemannian manifolds is developed in analogy to a similar idea for exterior derivative. The main object is the cohomotopy operator, which singles out a module of anticoexact forms from the module of differential forms defined on a star-shaped open subset of a manifold. It is shown that there is a direct sum decomposition of a differential form into coexact and anticoexat parts. This decomposition gives a new way of solving exterior differential systems. The method is applied to equations of fundamental physics, including vacuum Dirac-Kähler equation, coupled Maxwell-Kalb-Ramond system of equations occurring in a bosonic string theory and its reduction to the Dirac equation.