论文标题

通过相对论磁重新连接的颗粒加速

Particle acceleration by relativistic magnetic reconnection driven by kink instability turbulence in Poynting flux dominated jets

论文作者

Medina-Torrejon, Tania E., Pino, Elisabete M. de Gouveia Dal, Kadowaki, Luis H. S., Kowal, Grzegorz, Singh, Chandra B., Mizuno, Yosuke

论文摘要

磁化相对论喷气机中的粒子加速度仍然困惑理论家,特别是当人们试图解释在Blazar喷气机或Gamma-ray爆发中观察到的高度可变发射,从而对当前模型产生了严重的约束。在这项工作中,我们研究了在三维相对论磁性水力学射流中注射的颗粒的加速度,但受电流驱动的扭结不稳定性(CDKI)的影响,该射流驱动湍流和快速的磁重新连接。测试质子注射在喷气机几乎固定的快照中,经历高达最大能量的指数加速度。对于$ b \ sim 0.1 $ g的背景磁场,此饱和能量为$ \ sim 10^{16} $ eV,而对于$ b \ sim 10 $ g,它是$ \ sim 10^{18} $ ev。模拟还显示了加速颗粒与快速重新连接区域的明显关联。在射流中CDKI非线性生长的早期阶段,当仍然没有快速重新连接的部位时,注射颗粒也有效加速,但是通过摇摆的喷气式脊柱中的磁曲率漂移。但是,必须将它们注入的初始能量要比颗粒在重新连接位点加速所需的能量大得多。最后,我们还从模拟中获得了加速时间,这是由于对颗粒能量$ e $,$ t_a \ propto e^{0.1} $的重新连接而加速时间。加速粒子的能量光谱在加速度开始时具有功率定律指数$ p \ sim $ -1.2的高能尾巴,与早期的作品一致。我们的结果提供了一个适当的多维框架,用于在实际系统中探索这一过程并解释其复杂的排放模式,特别是在非常高的能带和最近在某些Blazars中检测到的相关中微子发射。

Particle acceleration in magnetized relativistic jets still puzzles theorists, specially when one tries to explain the highly variable emission observed in blazar jets or gamma-ray bursts putting severe constraints on current models. In this work we investigate the acceleration of particles injected in a three-dimensional relativistic magnetohydrodynamical jet subject to current driven kink instability (CDKI), which drives turbulence and fast magnetic reconnection. Test protons injected in the nearly stationary snapshots of the jet, experience an exponential acceleration up to a maximum energy. For a background magnetic field of $B \sim 0.1$ G, this saturation energy is $\sim 10^{16}$ eV, while for $B \sim 10$ G it is $\sim 10^{18}$ eV. The simulations also reveal a clear association of the accelerated particles with the regions of fast reconnection. In the early stages of the development of the non-linear growth of CDKI in the jet, when there are still no sites of fast reconnection, injected particles are also efficiently accelerated, but by magnetic curvature drift in the wiggling jet spine. However, they have to be injected with an initial energy much larger than that required for particles to accelerate in reconnection sites. Finally, we have also obtained from the simulations an acceleration time due to reconnection with a weak dependence on the particles energy $E$, $t_A \propto E^{0.1}$. The energy spectrum of the accelerated particles develops a high energy tail with a power law index $p \sim$ -1.2 in the beginning of the acceleration, in agreement with earlier works. Our results provide an appropriate multi-dimensional framework for exploring this process in real systems and explain their complex emission patterns, specially in the very high energy bands and the associated neutrino emission recently detected in some blazars.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源