论文标题

了解超出薄壁极限的Q球

Understanding Q-Balls Beyond the Thin-Wall Limit

论文作者

Heeck, Julian, Rajaraman, Arvind, Riley, Rebecca, Verhaaren, Christopher B.

论文摘要

在全局U(1)对称性下充满的复杂标量字段可以接收称为Q-balls的非亲寻孤子构型,这些配置稳定在单个粒子或较小的Q-balls中稳定。这些Q球是量子场理论中有趣的对象,但在几种宇宙学和天体物理环境中也具有现象学兴趣。 Q球轮廓由非线性微分方程确定,因此通常需要通过数值方法解决方案。在这项工作中,我们在多项式电位中得出了Q-ball曲线的分析近似值,并获得了重要的Q-ball特性的简单表达式。这些结果在经常使用的薄壁近似值上有了显着改善,并使Q-球将其描述为极好的精度而无需求解基本的微分方程。

Complex scalar fields charged under a global U(1) symmetry can admit non-topological soliton configurations called Q-balls which are stable against decay into individual particles or smaller Q-balls. These Q-balls are interesting objects within quantum field theory, but are also of phenomenological interest in several cosmological and astrophysical contexts. The Q-ball profiles are determined by a nonlinear differential equation, and so generally require solution by numerical methods. In this work, we derive analytical approximations for the Q-ball profile in a polynomial potential and obtain simple expressions for the important Q-ball properties of charge, energy, and radius. These results improve significantly on the often-used thin-wall approximation and make it possible to describe Q-balls to excellent precision without having to solve the underlying differential equation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源