论文标题

边缘流中的实时异常检测

Real-Time Anomaly Detection in Edge Streams

论文作者

Bhatia, Siddharth, Liu, Rui, Hooi, Bryan, Yoon, Minji, Shin, Kijung, Faloutsos, Christos

论文摘要

给定动态图的图表边流,我们如何使用恒定的时间和内存来以在线方式分配异常分数,以检测异常行为?现有的方法旨在检测单独的令人惊讶的边缘。在这项工作中,我们提出了MIDAS,该MIDA的重点是检测微簇异常,或者突然到达一组可疑类似的边缘,例如锁定行为,包括拒绝网络流量数据中的服务攻击。我们进一步提出了MIDAS-F,以解决将异常纳入算法的内部状态的问题,从而产生“中毒”效应,从而使未来的异常情况无法通过未被发现。 MIDAS-F引入了两种修改:1)我们修改了异常评分函数,旨在减少新到达边缘的“中毒”效果; 2)我们引入了一个条件合并步骤,该步骤每次滴答后都会更新算法的数据结构,但前提是异常得分低于阈值,也可以减少“中毒”效应。实验表明,MIDAS-F的精度明显高于MIDAS。 MIDA具有以下特性:(a)它检测到微簇异常,同时提供有关其假阳性概率的理论保证; (b)它是在线的,因此在恒定的时间和恒定内存中处理每个边缘,还比最新的方法更快地处理数据顺序; (c)它提供的ROC-AUC最多比最先进的方法高62%。

Given a stream of graph edges from a dynamic graph, how can we assign anomaly scores to edges in an online manner, for the purpose of detecting unusual behavior, using constant time and memory? Existing approaches aim to detect individually surprising edges. In this work, we propose MIDAS, which focuses on detecting microcluster anomalies, or suddenly arriving groups of suspiciously similar edges, such as lockstep behavior, including denial of service attacks in network traffic data. We further propose MIDAS-F, to solve the problem by which anomalies are incorporated into the algorithm's internal states, creating a `poisoning' effect that can allow future anomalies to slip through undetected. MIDAS-F introduces two modifications: 1) We modify the anomaly scoring function, aiming to reduce the `poisoning' effect of newly arriving edges; 2) We introduce a conditional merge step, which updates the algorithm's data structures after each time tick, but only if the anomaly score is below a threshold value, also to reduce the `poisoning' effect. Experiments show that MIDAS-F has significantly higher accuracy than MIDAS. MIDAS has the following properties: (a) it detects microcluster anomalies while providing theoretical guarantees about its false positive probability; (b) it is online, thus processing each edge in constant time and constant memory, and also processes the data orders-of-magnitude faster than state-of-the-art approaches; (c) it provides up to 62% higher ROC-AUC than state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源