论文标题

脑电图中的计算模型

Computational models in Electroencephalography

论文作者

Glomb, Katharina, Cabral, Joana, Cattani, Anna, Mazzoni, Alberto, Raj, Ashish, Franceschiello, Benedetta

论文摘要

计算模型位于基本神经科学和医疗保健应用的交集,因为它们允许研究人员检验假设\ textIt {在计算机中},并预测实验和相互作用的结果,实际上很难测试。然而,“计算模型”的含义是由不同领域的神经科学和心理学领域的研究人员以许多不同方式理解的,阻碍了沟通和协作。在这篇综述中,我们指出了脑电图(EEG)中计算建模的艺术状态,并概述了如何使用这些模型来整合电生理学,网络级模型和行为的发现。一方面,计算模型用于研究产生大脑活动的机制,例如用脑电图测量,例如在不同频段和/或不同空间地形上振荡的短暂出现。另一方面,计算模型用于设计实验并检验假设\ emph {in Silico}。脑电图计算模型的最终目的是获得对脑电图信号基础的机制的全面理解。这对于对脑电图测量结果的准确解释至关重要,这可能最终在新的临床应用中开发。

Computational models lie at the intersection of basic neuroscience and healthcare applications because they allow researchers to test hypotheses \textit{in silico} and predict the outcome of experiments and interactions that are very hard to test in reality. Yet, what is meant by "computational model" is understood in many different ways by researchers in different fields of neuroscience and psychology, hindering communication and collaboration. In this review, we point out the state of the art of computational modeling in Electroencephalography (EEG) and outline how these models can be used to integrate findings from electrophysiology, network-level models, and behavior. On the one hand, computational models serve to investigate the mechanisms that generate brain activity, for example measured with EEG, such as the transient emergence of oscillations at different frequency bands and/or with different spatial topographies. On the other hand, computational models serve to design experiments and test hypotheses \emph{in silico}. The final purpose of computational models of EEG is to obtain a comprehensive understanding of the mechanisms that underlie the EEG signal. This is crucial for an accurate interpretation of EEG measurements that may ultimately serve in the development of novel clinical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源