论文标题

学习使用可区分的物理学从视频中识别物理参数

Learning to Identify Physical Parameters from Video Using Differentiable Physics

论文作者

Kandukuri, Rama Krishna, Achterhold, Jan, Möller, Michael, Stückler, Jörg

论文摘要

视频表示学习最近由于其在活动和场景预测或基于视觉的计划和控制方面的应用而引起了计算机视觉的关注。视频预测模型通常会学习视频的潜在表示,该视频是从输入帧中编码的,并解码为图像。即使以动作为条件,纯粹的基于深度学习的体系结构通常也缺乏可解释的潜在空间。在这项研究中,我们在动作条件的视频表示网络中使用可区分的物理引擎来学习物理潜在表示。我们提出了有监督和自我监督的学习方法,以训练我们的网络并识别物理特性。后者使用空间变压器将物理状态解码为图像。我们实验中的仿真场景包括推动,滑动和碰撞对象,为此我们还分析了物理特性的可观察性。在实验中,我们证明我们的网络可以学会编码图像并在模拟场景中从视频和动作序列中识别质量和摩擦等物理属性。我们评估了受监督和自我监管方法的准确性,并将其与直接从状态轨迹学习的系统识别基线进行比较。我们还展示了我们方法从输入图像和动作中预测未来视频帧的能力。

Video representation learning has recently attracted attention in computer vision due to its applications for activity and scene forecasting or vision-based planning and control. Video prediction models often learn a latent representation of video which is encoded from input frames and decoded back into images. Even when conditioned on actions, purely deep learning based architectures typically lack a physically interpretable latent space. In this study, we use a differentiable physics engine within an action-conditional video representation network to learn a physical latent representation. We propose supervised and self-supervised learning methods to train our network and identify physical properties. The latter uses spatial transformers to decode physical states back into images. The simulation scenarios in our experiments comprise pushing, sliding and colliding objects, for which we also analyze the observability of the physical properties. In experiments we demonstrate that our network can learn to encode images and identify physical properties like mass and friction from videos and action sequences in the simulated scenarios. We evaluate the accuracy of our supervised and self-supervised methods and compare it with a system identification baseline which directly learns from state trajectories. We also demonstrate the ability of our method to predict future video frames from input images and actions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源