论文标题

阐明直接水分分割的障碍:氧气空位密度和PBTIO $ _3 $和TIO $ _2 $的关键作用

Elucidating the barriers on direct water splitting: Key role of oxygen vacancy density and coordination over PbTiO$_3$ and TiO$_2$

论文作者

Mete, Ersen, Ellialtıoğlu, Şinasi, Gulseren, Oguz, Uner, Deniz

论文摘要

在这项工作中,使用基于密度功能理论的最先进的第一原理计算,我们发现相对于彼此的浓度以及表面氧空位的协调对于PBTIO $ _3 $和TIO $ $ $ _2 $的(001)表面上的直接水分反应至关重要。为了在Tio $ _2 $末端的表面上发生水分反应,必须让两个相邻的O-Vaccancs充当活跃位点,以容纳两个吸附的水分子。但是,只有在额外的最近邻邻O-VACANCANCH存在下,最终才有可能将O-H键解离。不幸的是,这种必要的第三个空缺通过将解离的H原子捕获在TiO $ _2 $ _2 $被杀死的表面上,抑制了分子​​氢的形成。与TIO $ _2 $相比,在PBTIO $ _3 $ _3 $(001)表面的两种终止终止上的成本上的成本较小,在能量上的成本较小,PB的存在导致O型O债券在这些表面上较弱。分子氢的形成比PBTIO $ _3 $的PBO终止表面更有利,只需要两个相邻的氧空位。但是,氢分子被弱的范德华力保留在表面附近。我们的研究表明,两个障碍导致直接水分分裂过程的生产率较低。首先,最重要的是,至少有两个最近的邻居O-Vaccancs施加了熵屏障,从而在空间上阻碍了该过程。此外,在TIO $ _2 $末端的表面上也存在焓障碍,或从PBO终止的表面中去除h $ _2 $分子。

In this work, using the state-of-the-art first principles calculations based on density functional theory, we found that the concentration as well as coordination of surface oxygen vacancies with respect to each other were critical for direct water-splitting reaction on the (001) surfaces of PbTiO$_3$ and TiO$_2$. For the water-splitting reaction to happen on TiO$_2$-terminated surfaces, it is necessary to have two neighboring O-vacancies acting as active sites that host two adsorbing water molecules. However, eventual dissociation of O-H bonds is possible only in the presence of an additional nearest-neighbor O-vacancy. Unfortunately, this necessary third vacancy inhibits the formation of molecular hydrogen by trapping the dissociated H atoms over TiO$_2$-teminated surfaces. Formation of up to 3 O-vacancies, is energetically less costly on both terminations of PbTiO$_3$ (001) surfaces compared with that of TiO$_2$, the presence of Pb leads to weaker O bonds over these surfaces. Molecular hydrogen formation is more favorable over the PbO-terminated surface of PbTiO$_3$, requiring only two neighboring oxygen vacancies. However, hydrogen molecule is retained near the surface by weak van der Waals forces. Our study indicates two barriers leading to low productivity of direct water splitting processes. First and foremost, there is an entropic barrier imposed by the requirement of at least two nearest-neighbor O-vacancies, sterically hindering the process. Furthermore, there are also enthalpic barriers of formation over TiO$_2$-terminated surfaces, or removal of H$_2$ molecules from the PbO-terminated surface.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源