论文标题
带有一般边界条件的Navier-Stokes-fourier System
Navier-Stokes-Fourier system with general boundary conditions
论文作者
论文摘要
我们考虑在有限域中的Navier-Stokes-较大的系统$ω\ subset r^d $,$ d = 2,3 $,具有物理逼真的在/输出流量边界条件上。我们开发了一个弱解决方案的新概念,以满足相对能量不平等的一般形式。对于任何有限的能量初始数据,弱解决方案在全球范围内都存在,并符合弱的唯一性原理。
We consider the Navier--Stokes--Fourier system in a bounded domain $Ω\subset R^d$, $d=2,3$, with physically realistic in/out flow boundary conditions. We develop a new concept of weak solutions satisfying a general form of relative energy inequality. The weak solutions exist globally in time for any finite energy initial data and comply with the weak--strong uniqueness principle.