论文标题

在线替代发电机反对对抗攻击

Online Alternate Generator against Adversarial Attacks

论文作者

Li, Haofeng, Zeng, Yirui, Li, Guanbin, Lin, Liang, Yu, Yizhou

论文摘要

近年来,由于深度卷积神经网络的发展,计算机视觉领域的一部分进展部分。但是,众所周知,深度学习模型对对抗性示例敏感,这些例子是通过在真实图像上添加准可察觉的噪声来合成的。一些现有的防御方法需要重新训练受到攻击的目标网络并通过已知的对抗性攻击来增强火车设置的火车,这效率低下,并且可能没有未知的攻击类型而毫无主张。为了克服上述问题,我们提出了一种便携式防御方法,在线替代生成器,该方法无需访问或修改目标网络的参数。提出的方法是通过在线合成从头开始的另一个图像以获取输入图像的方法,而不是删除或破坏对抗性的噪音。为了避免攻击者利用的预估计参数,我们或在推理阶段进行了交替更新生成器和合成图像。实验结果表明,针对灰色框对抗攻击,提出的防御方案和方法优于一系列最先进的防御模型。

The field of computer vision has witnessed phenomenal progress in recent years partially due to the development of deep convolutional neural networks. However, deep learning models are notoriously sensitive to adversarial examples which are synthesized by adding quasi-perceptible noises on real images. Some existing defense methods require to re-train attacked target networks and augment the train set via known adversarial attacks, which is inefficient and might be unpromising with unknown attack types. To overcome the above issues, we propose a portable defense method, online alternate generator, which does not need to access or modify the parameters of the target networks. The proposed method works by online synthesizing another image from scratch for an input image, instead of removing or destroying adversarial noises. To avoid pretrained parameters exploited by attackers, we alternately update the generator and the synthesized image at the inference stage. Experimental results demonstrate that the proposed defensive scheme and method outperforms a series of state-of-the-art defending models against gray-box adversarial attacks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源