论文标题
动态离子对等离子体激发的带结构的影响
Effect of Dynamic Ions on Band Structure of Plasmon Excitations
论文作者
论文摘要
在本文中,我们开发了一种新方法来研究多种等离子体中的等离子能带结构。使用这种方法,我们研究了具有任意退化电子流体的不同等离子体系统的等离子体分散带结构。线性化的schrödinger-Poisson模型用于得出适当的耦合伪型系统,从中计算了能量分散结构。结果表明,由于电子离子带结构的混合而导致的等离激子分散特征的引入离子迁移率超出了具有宽等离子体能量带隙的jellium(静态离子)模型,它可以从根本上修改导致新形式的低级能量带。电荷状态的效果和电子流体对等离激元带结构的化学潜力表明了许多新特征,并揭示了离子在电子离子等离子体系统中辅助等离子体激发中所起的基本作用。此外,我们的研究表明,离子电荷筛选对含有等离子体的离子的等离子体激发有重大影响。配对等离子体的能带结构证实了几个等离子体环境中离子在等离子体激发中的独特作用。当前的研究有助于更好地了解带电环境中集体激发的基本机制,以及重种类在基本等离子体上准粒子上的重要作用。这项研究中开发的方法也可以扩展到复杂的多种物种和磁化量子等离子体以及研究纳米金属结构中的表面等离子体 - 果皮相互作用。
In this paper we develop a new method to study the plasmon energy band structure in multispecies plasmas. Using this method, we investigate plasmon dispersion band structure of different plasma systems with arbitrary degenerate electron fluid. The linearized Schrödinger-Poisson model is used to derive appropriate coupled pseudoforce system from which the energy dispersion structure is calculated. It is shown that the introduction of ion mobility, beyond the jellium (static ion) model with a wide plasmon energy band gap, can fundamentally modify the plasmon dispersion character leading to a new form of low-level energy band, due to the electron-ion band structure mixing. The effects ionic of charge state and chemical potential of the electron fluid on the plasmonic band structure indicate many new features and reveal the fundamental role played by ions in the phonon assisted plasmon excitations in the electron-ion plasma system. Moreover, our study reveals that ion charge screening has a significant impact on the plasmon excitations in ion containing plasmas. The energy band structure of pair plasmas confirm the unique role of ions on the plasmon excitations in many all plasma environments. Current research helps to better understand the underlying mechanisms of collective excitations in charged environment and the important role of heavy species on the elementary plasmon quasiparticles. The method developed in this research may also be extended for complex multispecies and magnetized quantum plasmas as well as to investigation the surface plasmon-polariton interactions in nanometallic structures.