论文标题

perideNangics的边界元素方法

The Boundary Element Method of Peridynamics

论文作者

Liang, Xue, Wang, Linjuan, Xu, Jifeng, Wang, Jianxiang

论文摘要

Peridyannic理论在处理不连续性,动态负载和非本地性方面具有优势。 Peridyanics的全面分化表述对复杂和实际问题的数值解决方案构成了挑战。一些重要的问题引起了很多关注,例如无限域的计算,由于地平线不完整而导致边界的软化处理以及动态过程中的时间误差积累。在这项工作中,我们开发了\ textIt {Peridynynamic边界元素方法}(PD-BEM)。数值示例表明,PD-BEM表现出多种特征。首先,对于非破坏性情况,PD-BEM可以比直接离散计算域的Peridynanic无网状粒子方法(PD-MPM)快一到两个数量级。其次,它消除了时间积累误差,因此比PD-MPM更好地保存了总能量。第三,它没有表现出虚假的边界软化现象。对于在加载过程中新边界出现的破坏性情况,我们提出了一种耦合方案,将PD-MPM应用于破裂的区域,并将PD-BEM应用于未裂缝的区域,以便可以显着减少计算时间。

The peridynamic theory brings advantages in dealing with discontinuities, dynamic loading, and non-locality. The integro-differential formulation of peridynamics poses challenges to numerical solutions of complicated and practical problems. Some important issues attract much attention, such as the computation of infinite domains, the treatment of softening of boundaries due to an incomplete horizon, and time error accumulation in dynamic processes. In this work, we develop the \textit{peridynamic boundary element method} (PD-BEM). The numerical examples demonstrate that the PD-BEM exhibits several features. First, for non-destructive cases, the PD-BEM can be one to two orders of magnitude faster than the peridynamic meshless particle method (PD-MPM) that directly discretizes the computational domains; second, it eliminates the time accumulation error, and thus conserves the total energy much better than the PD-MPM; third, it does not exhibit spurious boundary softening phenomena. For destructive cases where new boundaries emerge during the loading process, we propose a coupling scheme where the PD-MPM is applied to the cracked region and the PD-BEM is applied to the un-cracked region such that the time of computation can be significantly reduced.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源