论文标题

较高维时时间的奇怪恒星的流体脉动模式

Fluid pulsation modes from strange stars in a higher-dimensional space-time

论文作者

Arbañil, José D. V., Lenzi, César H., Malheiro, Manuel

论文摘要

在这项工作中,我们迈出了第一步,以额外的维度得出非辐射脉动方程式,并研究$ f $ - 和$ p_1 $ - 模式的奇异夸克恒星的频率,在整流罩近似中,随着尺寸的数量而变化。在这方面,该研究是通过在数值上求解非脉冲脉动方程式进行的,该方程对$ d $二维的时空$(d \ geq4)$进行了调整。我们将内部连接到Schwarzschild-Tangherlini外部度量标准,并分析$ f $ - 和$ p_1 $ - 模式频率。我们发现,这些频率可能会比四维时空中的频率更高。 $ f $ mmode频率本质上是恒定的,并且仅适用于大力半径的大半径值随着引力半径而单调和快速增长。在重力半径范围内,其中$ f $ mmode频率是恒定的,它们增加了时空尺寸$ 4 \ leq d \ leq6 $,并减少$ d \ geq7 $。关于$ p_1 $ - 模式频率,它们对于更高的维度总是更大,并且随着引力半径的增加而单调衰减。在额外的维度中,正如四维时空发生的那样,我们发现$ p_1 $ - mmode频率总是大于$ f $ modes的频率。在牛顿的重力中,对于$ d $尺寸的同质恒星,我们观察到$ f $ - mode eigenfquencies是恒定的,并且由关系$ω^2 = l \,m \,m \,g_d/r^{d-1} $;其中$ l $代表球形谐波指数,$ m \,g_d $是总星质量和$ r $ the Stellar Refius。

In this work, we make the first step to derive non-radial pulsation equations in extra dimensions and investigate how the $f$- and $p_1$-mode frequencies of strange quark stars, within the Cowling approximation, change with the number of dimensions. In this regard, the study is performed by solving numerically the non-radial pulsation equations, adjusted for a $d$-dimensional space-time $(d\geq4)$. We connect the interior to a Schwarzschild-Tangherlini exterior metric and analyze the $f$- and $p_1$- mode frequencies. We found that the frequencies could become higher than those found in four-dimensional space-time. The $f$-mode frequency is essentially constant and only for large gravitational radius values grows monotonically and fast with the gravitational radius. In a gravitational radius range, where $f$-mode frequencies are constant, they increase for space-time dimensions $4\leq d\leq6$ and decrease for $d\geq7$. Regarding $p_1$-mode frequencies they are always larger for higher dimensions and decay monotonically with the increase of the gravitational radius. In extra dimensions, as it happens for four-dimensional space-time, we found $p_1$-mode frequencies are always larger than the $f$-modes ones. In the Newtonian gravity, for a homogeneous star in $d$ dimensions, we observe that the $f$-mode eigenfrequencies are constant and given by the relation $ω^2=l\, M\, G_d/R^{d-1}$; where $l$ represents the spherical harmonic index, $M\,G_d$ being the total star mass and $R$ the stellar radius.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源