论文标题
从1998年至2017年,在台湾各地探测和监视城市化地区的长期滑坡
Detecting and monitoring long-term landslides in urbanized areas with nighttime light data and multi-seasonal Landsat imagery across Taiwan from 1998 to 2017
论文作者
论文摘要
监视长期滑坡活动对于风险评估和土地管理很重要。尽管开放式3000万Landsat图像的广泛使用,但在将滑坡与其他人为障碍分开时,它们的滑坡检测效用通常受到限制。在这里,我们从1998年至2017年回顾性地生产滑坡地图,用于易于滑坡和人口稠密的台湾(35,874 km2)。为了提高滑坡的分类准确性,我们将防御气象卫星计划(DMSP)和可见的红外成像放射线套件(VIIRS)的夜间光像与多季节的白天光学landsat时间销售以及来自先进的SpaceBorne Thermanth Hyphere Hypormanth Thermal Hyphere Hyphere Hypere extression Elefection数据的数字数据进行了整合。我们采用了非参数的机器学习分类器,随机森林来对卫星图像进行分类。分类器接受了三年(2005年,2010年和2015年)的数据培训,并通过十二年的独立参考样本进行了验证。我们的结果表明,与基于单季光学图像的传统方法相比,将夜间光数据和多季节图像结合起来显着改善了分类(P <0.001)。结果证实,开发的分类模型可以长期以来台湾的滑坡地图,年度总体准确性在96%至97%之间,用户和生产商的准确性在73%至86%之间。从1998年到2017年对滑坡库存的时空分析显示,有不同的时间滑坡活动的时间模式,显示了那些持久滑坡的地区以及在植被再生后倾向于重新出现陆地滑坡的其他地区。总而言之,我们提供了一种强大的方法来检测基于可免费获得的卫星图像的长期滑坡活动,该活动可以应用于其他地方。
Monitoring long-term landslide activity is important for risk assessment and land management. Despite the widespread use of open-access 30m Landsat imagery, their utility for landslide detection is often limited when separating landslides from other anthropogenic disturbances. Here, we produce landslide maps retrospectively from 1998 to 2017 for landslide-prone and highly populated Taiwan (35,874 km2). To improve classification accuracy of landslides, we integrate nighttime light imagery from the Defense Meteorological Satellite Program (DMSP) and the Visible Infrared Imaging Radiometer Suite (VIIRS), with multi-seasonal daytime optical Landsat time-series, and digital elevation data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). We employed a non-parametric machine-learning classifier, random forest, to classify the satellite imagery. The classifier was trained with data from three years (2005, 2010, and 2015), and was validated with an independent reference sample from twelve years. Our results demonstrated that combining nighttime light data and multi-seasonal imagery significantly improved the classification (p<0.001), compared to conventional methods based on single-season optical imagery. The results confirmed that the developed classification model enabled mapping of landslides across Taiwan over a long period with annual overall accuracy varying between 96% and 97%, user's and producer's accuracies between 73% and 86%. Spatiotemporal analysis of the landslide inventories from 1998 to 2017 revealed different temporal patterns of landslide activities, showing those areas where landslides were persistent and other areas where landslides tended to reoccur after vegetation regrowth. In sum, we provide a robust method to detect long-term landslide activities based on freely available satellite imagery, which can be applied elsewhere.