论文标题

通过非线性量子步行在2D网格上进行搜索

Searching via nonlinear quantum walk on the 2D-grid

论文作者

Herzog, Basile, Di Molfetta, Giuseppe

论文摘要

我们提供了数值证据,表明Wong and Meyer \ cite {Meyer2013Nonlinearear}引入的非线性搜索算法,以有效的非线性相位,可以扩展到有限的2维电网,以保持相同的计算优势,并保持相同的计算优势\ bhg {complassical al and} allgits and and and and and}。为此,我们考虑了免费的晶格哈密顿式,并带有Childs和ge \ cite {Childs_2014}引入的线性分散关系。数值模拟表明,步行者在$ o(n^{1/4} \ log^{3/4} n)$ step中找到标记的顶点,并带有概率$ o(1/\ log n)$,对于$ o(n^{1/4} \ log log^^{7/4} n)$的总体复杂性。我们还证明了沃克参数的最佳选择,以避免时间测量精度会影响算法的复杂性搜索时间。

We provide numerical evidence that the nonlinear searching algorithm introduced by Wong and Meyer \cite{meyer2013nonlinear}, rephrased in terms of quantum walks with effective nonlinear phase, can be extended to the finite 2-dimensional grid, keeping the same computational advantage \BHg{with} respect to the classical algorithms. For this purpose, we have considered the free lattice Hamiltonian, with linear dispersion relation introduced by Childs and Ge \cite{Childs_2014}. The numerical simulations showed that the walker finds the marked vertex in $O(N^{1/4} \log^{3/4} N) $ steps, with probability $O(1/\log N)$, for an overall complexity of $O(N^{1/4}\log^{7/4}N)$. We also proved that there exists an optimal choice of the walker parameters to avoid that the time measurement precision affects the complexity searching time of the algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源