论文标题

对具有端点和状态约束和二元性的差分包含物的最佳控制

Optimal control of differential inclusions with endpoint and state constraints and duality

论文作者

Mahmudov, Elimhan N.

论文摘要

论文研究由具有端点和状态约束的高阶进化差异包含(DFI)描述的最佳控制问题。在Euler-Lagrange类型包含的术语中,对于高阶DFI的最佳条件提供了足够的条件。结果表明,根据局部伴随映射定义的一阶DFI的伴随包含与经典的Euler-Lagrange包含相吻合。然后证明了二元定理,这表明Euler-Lagrange包含是两个问题的“二元关系”。在纸张结束时,考虑了三阶线性和第四阶多面体DFI的二元性问题。

The paper studies optimal control problem described by higher order evolution differential inclusions (DFIs) with endpoint and state constraints. In the term of Euler-Lagrange type inclusion is derived sufficient condition of optimality for higher order DFIs. It is shown that the adjoint inclusion for the first order DFIs, defined in terms of locally adjoint mapping, coincides with the classical Euler-Lagrange inclusion. Then a duality theorem is proved, which shows that Euler-Lagrange inclusions are "duality relations" for both problems. At the end of the paper duality problems for third order linear and fourth order polyhedral DFIs are considered.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源